

0040-4039(94)01103-6

A Chemoselective Approach to Functionalize the C-10 Position of 10-Deacetylbaccatin III. **Synthesis and Biological Properties of Novel C-10 Taxol@ Analogues**

Joydeep Kant,^{*§} Wendy S. O'Keeffe, Shu-Hui Chen, Vittorio Farina,[†] Craig Fairchild,[†] Kathy Johnston,[†] **John F. Kadow, Byron H. Long[†] and Dolatrai Vyas**

Bristol-Myers Squibb Pharmaceutical Research Institute, 5 Research Parkway, P.O. Box 5 100, Wallingford, CT 06492-7660. †Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ 08543.

Abstmct : A chemoselective approach rofknctionalize the C-IO position of IO-deacetyl baccatin Ill. a key intermediate for the semi-synthesis of paclitaxel, is described. The chemistry provides an easy access to a variety of C-10 hydroxyl derivatives, such as, ethers, esters, carbonates, carbamates, and sulfonates under mild conditions. Th

Taxol [®] (paclitaxel) (1), a complex antineoplastic diterpene isolated from Taxus brevifolia,¹ has recently been approved for the treatment of metastatic carcinoma of the ovary.² Paclitaxel inhibits cell replication in the mitotic phase of the cell cycle by promoting polymerization of microtubules which are stable and abnormally resistant to depolymerization.³ In recent years, the clinical importance of paclitaxel has prompted the synthesis of novel analogues with the goal of designing more effective antitumor drugs. 4

With the aim of obtaining drugs having more desirable properties than the prototype, we were interested in replacing the C-10 acetate moiety with other functionalities. Recently, few publications have appeared in the literature describing the chemistry at the C-10 position of paclitaxel or on its naturally occuring semi-synthetic precursor, lO-deacetyl baccatin III (IO-DAB) (2). The C-10 hydroxyl group has been deoxygenated under Barton's condition to synthesize 10-deoxy analogues of paclitaxel;⁵ simple carbamates have been prepared by reacting C-10 trichloroethyloxy carbonyl (TROC) derivative of paclitaxel with primary amines 6 ; other studies include: acetylation and protection (as a TROC ester) of the C-10 hydroxyl group in $10\text{-}DAB$.⁷

For our planned studies, 10-DAB (2) was envisioned to be the ideal starting material. The synthetic manipulations at C-10 appeared to be much easier without the C-13 phenylisoserine side chain, furthermore, the side chain can always be introduced at a later stage by using a variety of published procedures.⁴ This letter describes our studies on 10-DAB, which includes: chemoselective approach to functionalize the C-10 position; synthesis and biological evaluations of novel paclitaxel analogues.

In view of the NMR studies and molecular mechanics calculations it is reasonable to assume that the C-13 hydroxyl group is sterically congested due to its location inside the skeletal concavity of 2. The study has also revealed the possibility of a hydrogen bonding between the C-13 hydroxyl group and the C-4 acetate moiety.⁸ Hence, with the more reactive C-7 hydroxyl protected, an opportunity was available to selectively deprotonate the C-10 hydroxyl to generate an alkoxylithium anion which upon treatment with various electrophiles might afford the C-10 derivatives. To demonstrate this concept, $3⁹$ was treated with 1.05 equiv of n-BuLi at -40°C in THF followed by the addition of 1.2 equiv of acetyl chloride. After 60 min at 0°C the reaction afforded 7-triethylsilyl baccatin III (4). This method was an improvement over existing Greene's acetylation method^{7c} which employed an excess of reagents and longer reaction time. The reaction was found to be quite general allowing us to introduce a variety of functionalities (esters, ethers, carbonates, carbamates, and sulfonates) at the C-10 position of baccatin in moderate to high yields by simply treating the C-10 alkoxyanion with different electrophiles (Table I).

An attempt to isolate the triflate 13 by reacting the C-10 alkoxy anion with N-phenyltrifluoro-**OsiEta methanesulfonimide was unsuccessful under our** reaction protocol. Instead, the reaction afforded the enone 14, presumably arising from the labile triflate **13** *via an* **allylic carbocationic intermediate. The l3 14 stereochemistry at the C-12 position was assigned**

based on nOe experiments. A strong interaction was observed between the C-12 proton and C-17 methyl **protons which led us to assign a-methyl configuration at the C-12 position. To synthesize our target analognes,** the C-10 baccatin derivative was treated with 1.10 equiv of LiHMDS or *n*-BuLi followed by the addition of βlactam at low temperature.¹⁰ After isolating the C-13 acylated paclitaxel derivative, the analogue was subjected to acidic conditions to remove the two silyl (2' & 7) protecting groups. Following this protocol, a variety of C-**10 paclitaxel analogues were synthesized (Scheme I, Table II). 9 All new analogues were evaluated in tubulin polymerization 3 and** *in-vitro* **cytotoxicity assays performed using the HCT 16 human colon carcinoma cell** lines (Table II).¹¹

 $a=$ Ratio of analogue relative to paclitaxel (EC_{0.01} @ 5 μ M).

b=Drug concentration required to inhibit cell proliferation to 50% vs. untreated cells (incubated at 37℃ for 72 h).

All new compouuds displayed cytotoxic properties (Table II). Analogues with C-10 methyl ether (20) or methyl carbonate (22) with Taxotere'D" side chain (i.e., 3'NHBOC) were found to be more cytotoxic than paclitaxel (1) or IO-acetyl taxotexe (15). These compounds also exhibited better tubulin binding properties. However, with the paclitaxel side chain, the corresponding C-10 modifications resulted in analogues (19 & 21) exhibiting tubulin binding similar to paclitaxel but less cytotoxic than the parent compound, with the exception of C-10 carbamate (18). which was found to be more potent than paclitaxel. The analogue with cyclopropyl ester (17) was as active as paclitaxel, but other esters, such as the n-butyl ester, displayed reduced cytotoxicity. Similarly, analogues with the C-10 benzoate ester (23 & 24) also exhibited cytotoxicity comparable to paclitaxel, especially with Taxotere[™] side chain. In view of our studies, it is reasonable to suggest that the **functional group present at the C-10 position does modulate the antitumor activity, which is quite contrary to** some of the earlier predictions.⁴ Further studies are in progress and full details will be published in due time.

Ackaowledgment, We would like to extend our thanks to Dr. Terry Doyle for valuable suggestions. We are also indebted to Dr. Stella Huang for performing nGe experiments .

References and Notes

0 All the mrrespondence should be addressed to the author at his present address: Institute for Chemistry, Miles Inc., 400 Morgan Lane, West Haven, CT 06516 - 4175, USA. 1 Present address: Department of Process Research, Boehringer Ingelheim Pharmaceuticals, 900 Ridgebury Road, Ridgefield, m 06877.

1. Wani, M.C.: Taylor, H. L.; Wall, M.E.; Coggon. P.: McPhail, A. T. J-Am. *Chem. Sot.* **1971,93,2325.**

2. Rowinsky, E.K.; Caxenave. L.A.; Donehower, R.C. J. Nat. Cancer Insf. 1990,82, 1247.

3. Schiff, P.B.; Fant, J.; Horwitz, S.B. *Nature* **1979,277,665.**

4. Leading reviews: (a) Georg. G.I.; Boge. T.C.; Chemvallath, Z.S.; Clowers. J.S.; Harriman, G.C.B.; Hepperle. M.; Park H. The Medicinal Chemistry of Taxol. In *Taxol: Science and Applications;* **Suffness, M., Ed.; CRC: Boca Raton. FL.** *in press.* **(b) Suffness. M. In Annual** *Reports in Medicinal Chemistry:* **Academic Press, Inc.: San Diego, 1993,28,305. (c) Gu&ard, D.; Gudritte-Voegelein, F.; Potier, P.** *Act. Chem. Res.* **1993,26, 160. (d) Kingston, D.G.I.; Mollnem. A.A.; Rimoldi, J.M.** *Frog. Chem. Org. Nat. Prod.* **1993,6Z, 1.**

5. **(a) Chen. S-H.; Fairchild, C.: Mamber, S.; Farina, V. J.** *Org.* **Chem. 1993,58,2927. (b) Chen, S-H.; Huang, S.; Kant, J.; Fairchild, C.; Wei, J.; Farina, V. J. Org. Chem. 1993,58.. 5028. (c) Chaudhary, A.G.; Kingston, D.G.I.** *Tetrahedon Z.ett. 1993,492l.*

6. (a) Bourzat, J-D.; Commercon, A.; Guénard, D.; Guéritte-Voegelein, F.; Potier, P. European Patent (1993) 524, 093.

7. (a) Ettouati. L.; Ahond, A.; Convert, 0.; Poupat, C.: Potier, P. *Bull. Sot. Chim. (France) 1989, 687.* **(b) Wahl, A.; Gu&itte-Voegelein, F.; Gutnard, D.; Le Goff, M-T.; Potier, P.** *Terrahedran 1992,48, 6965. (c)* Denis, J-N.; Greene, A.E.; Guénard, D.; Guéritte-Voegelein, F.; Mangatal, L.; Potier, P. J. *Am. Chem. Soc.* **1988,** *110*, **5917.**

8. Gu&itte-Voegeleln, F.; Senilh, V.; David, B.; Gu6nard, D.; Potier. P. *Tetrahedron* **1986.42.4451.**

9. Treatment of 2 with 3.0 equiv triethylsilyl chloride and imidaxole in DMF at ambient temperature for 3h afforded 3 in 80% yield. Also see reference 7c for an alternate preparation. All new compounds were characterized fully by NMR, *HRMS,* **and CHN analysis. We thank our Analytical Department for the services.**

10. (a)Holton, R.A. U.S.Patent (1991) 5,015,744. (b) Holton, R.A. U.S. Patent (1992) 5, 136,060.

11. Scudiero, D.A.; Shoemaker, R.H.; Paull, K.D.; Monks, A.; Tierney, S.; Nofziger, T.H.; Currens, M.J.; **Se&f. D.; Boyd, M.R.** Cancer **Res.** *1988,48,4827.*

(Received in USA **4 May 1994;** *accepted 7 June* **1994)**